II B.Tech - II Semester - Regular / Supplementary Examinations MAY - 2023

FORMAL LANGUAGES AND AUTOMATA THEORY (COMPUTER SCIENCE \& ENGINEERING)

Duration: 3 hours

Max. Marks: 70
Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.
2. All parts of Question must be answered in one place.

BL - Blooms Level
CO - Course Outcome

			BL	CO	Max. Marks
UNIT-I					
1	a)	Name the states and notations used for representing Finite Automata. Explain with an example.	L2	CO 2	7 M
	b)	Show a Deterministic Finite Automata (DFA), M that accepts the language $L(M)=\left\{w \mid w \mathcal{E}\{a, b\}^{*}\right.$ and w does not contain 3 consecutive b's \}.	L3	CO 2	7 M
OR					
2	a)	Infer an equivalent Non-Deterministic Finite Automata (NFA) without ε - transition for NFA with ε - transitions shown in below figure.	L2	CO 4	7 M

	b)	Construct a DFA equivalent to NFA.	L3	CO4	7 M
UNIT-II					
3	a)	Extract the regular expression from given DFA.	L2	CO2	7 M
	b)	Using pumping lemma for regular sets, show that $\mathrm{L}=\left\{0^{\mathrm{n}}\right\}$ where n is a perfect square, is not regular.	L3	CO 2	7 M
OR					
4	a)	Construct DFA equivalent to a regular expression $(0+1)^{*}(00+11)(0+1)^{*}$ and also find the reduced DFA.	L3	CO 2	7 M
	b)	Sketch an ε-NFA for the left linear grammar $\mathrm{S} \rightarrow \mathrm{S} 10 \mid 0$.	L3	CO 2	7 M

UNIT-III

5	a)	Convert the following grammar to Chomsky Normal Form (CNF) . $\begin{aligned} & \mathrm{S} \rightarrow \mathrm{aAbB} \\ & \mathrm{~A} \rightarrow \mathrm{aA} \mid \mathrm{a} \\ & \mathrm{~B} \rightarrow \mathrm{bB} \mid \mathrm{b} \\ & \hline \end{aligned}$	L2	CO 2	7 M
	b)	Consider the CFG with $\{\mathrm{S}, \mathrm{A}, \mathrm{B}\}$ as the nonterminal, alphabet, $\{\mathrm{a}, \mathrm{b}\}$ as the terminal alphabet, S as the start symbol and the following set of production rules. $\begin{aligned} & \mathrm{S} \rightarrow \mathrm{ASA}\|\mathrm{aB}\| \mathrm{b} \\ & \mathrm{~A} \rightarrow \mathrm{~B} \\ & \mathrm{~B} \rightarrow \mathrm{~b} \mid \mathrm{E} \end{aligned}$ Construct a reduced grammar equivalent to the above grammar.	L3	CO 2	7 M

OR

6	a)	Consider the Grammar $S \rightarrow S+S\|S * S\| a \mid b$. Construct derivation tree for string w=a*b+a	L3	CO2	7 M
b)	Eliminate all unit productions from the grammar $S \rightarrow$ AB A \rightarrow a $B \rightarrow C \mid b$ $C \rightarrow D$ $D \rightarrow E \mid b C$ $E \rightarrow$ D\|Ab	L3	CO2	7 M	

UNIT-IV

7	a)	Devise a Push Down Automata (PDA), which accepts $L=\left\{a^{n} c^{m} b^{n}: m, n \geq 1\right\}$	L4	CO4	7 M
	b)	Discover a PDA to accept the language $\mathrm{L}=\left\{\mathrm{W} \mid \mathrm{W} \varepsilon(\mathrm{a}, \mathrm{b})^{*}\right.$ and $\left.\mathrm{n}_{\mathrm{a}}(\mathrm{W})>\mathrm{n}_{\mathrm{b}}(\mathrm{W})\right\}$	L3	CO 2	7 M
OR					
8	a)	Give a deterministic PDA for the language $\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{cb}^{2 \mathrm{n}}: \mathrm{n} \geq 1\right\}$ over the alphabet $\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$. Identify the acceptance state.	L2	CO 2	7 M
	b)	For the grammar $\begin{aligned} & \mathrm{S} \rightarrow \mathrm{aABC} \\ & \mathrm{~A} \rightarrow \mathrm{aB} \mid \mathrm{a} \\ & \mathrm{~B} \rightarrow \mathrm{bA} \mid \mathrm{b} \\ & \mathrm{C} \rightarrow \mathrm{a} \end{aligned}$ Articulate the corresponding PDA.	L3	CO 2	7 M

UNIT-V

9	a)	Define universal Turing machine and explain its functioning.	L2	CO3	7 M
	b)	Construct a Turing Machine that recognizes the set $\mathrm{L}=\left\{0^{2 \mathrm{n}} 1^{\mathrm{n}} \mid \mathrm{n} \geq 0\right\}$.	L 3	CO 4	7 M

OR

10	a)	Sketch the Turing Machine to recognize the palindromes of digits $\{0,1\}$. Give its state transition diagram also.	L3	CO3	7 M
b)	What is posts correspondence problem? Explain with an example.	L2	CO4	7 M	

